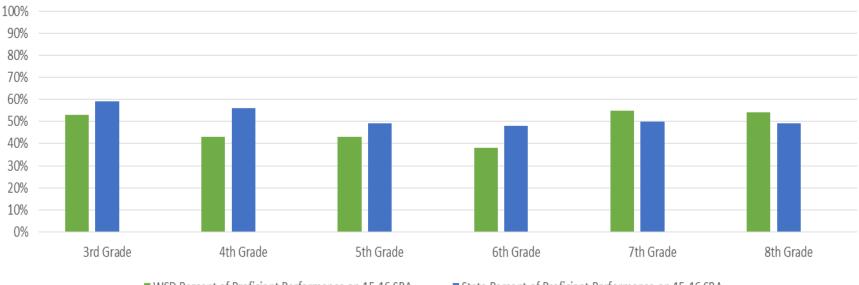

Woodland Public Schools 15-16 Student Performance on State Testing

# Standardized tests are used in a few primary ways:

- To hold schools and educators accountable for educational results and student performance. To evaluate whether students have learned what they are expected to learn, such as whether they have met state learning standards.
- To identify gaps in student learning and academic progress. In this case, test scores may be used, along with other information about students, to diagnose learning needs so that educators can provide appropriate services, instruction, or academic support.
- To identify achievement gaps among different student groups, including students of color, students who are not proficient in English, students from low-income households, and students with physical or learning disabilities.
- To determine whether educational policies are working as intended. In this case, elected officials and education policy makers may rely on standardized-test results to determine whether their laws and policies are working or not, or to compare educational performance from school to school or state to state.

## Smarter Balanced Assessment of Student Achievement in English Language Arts

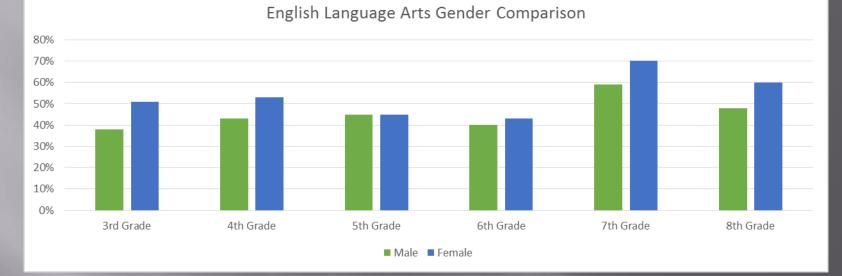



#### 2015-16 English Language Arts Performance

■ WSD Percent of Proficient Performance on 15-16 SBA

State Percent of Proficient Performance on 15-16 SBA

## Smarter Balanced Assessment of Student Achievement in Mathematics

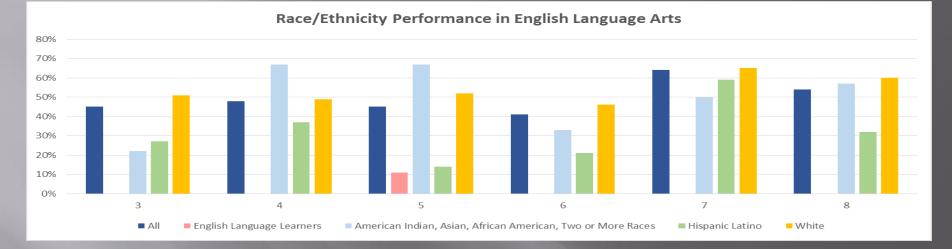




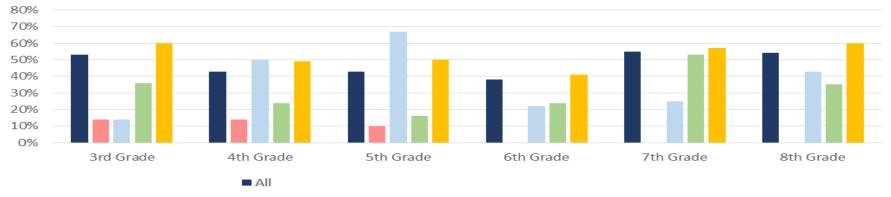


WSD Percent of Proficient Performance on 15-16 SBA

State Percent of Proficient Performance on 15-16 SBA


## **Gender Comparison**




#### Mathematics Gender Comparison



## **Race and Ethnicity Comparison**



#### **Race/Ethnicity Performance in Mathematics**



English Language Learners

American Indian, Asian, African American, Two or More Races

Hispanic Latino

White

| High School Performance |                     |                   |                      |                    |                         |                       |                           |                         |                         |                       |
|-------------------------|---------------------|-------------------|----------------------|--------------------|-------------------------|-----------------------|---------------------------|-------------------------|-------------------------|-----------------------|
| Grade<br>Level          | State<br>SBA<br>ELA | WSD<br>SBA<br>ELA | State<br>SBA<br>Math | WSD<br>SBA<br>Math | State<br>Algebra<br>EOC | WSD<br>Algebra<br>EOC | State<br>Geomet<br>ry EOC | WSD<br>Geomet<br>ry EOC | State<br>Biology<br>EOC | WSD<br>Biology<br>EOC |
| 10                      | 73%                 | 76%<br>(165)      | 60%                  | *                  |                         |                       |                           |                         |                         |                       |
| 11                      | 32%                 | 26%<br>(19)       | 35%                  | *                  | <b>29</b> %             | 19%<br>(32)           | <b>52</b> %               | 32%<br>(19)             | <b>68</b> %             | 65%<br>(206)          |
| 12                      | 19%                 | *                 | 10%                  | *                  |                         |                       |                           |                         |                         |                       |

These HS scores do not include previously passed students.

\* In some cases the number of students tested were too few to be statistically comparable to the state average.

## WHAT DO THE DATA TELL US?

## **Conclusions we can draw?**



### We are missing the mark!



## What conclusions can you draw about what you are seeing in this picture?

### We have some assumptions...

- New ELA Curriculum (year 1)
- New Math Curriculum (Year 2)
  - Implementation Dip
  - Lack of fidelity to instructional material implementation
- Leadership Changes
- Testing Environment
  - Chromebook vs computer (screen and keyboard size)
  - Hottest Days during testing
- Differences in instructional time?
  - 5 & 6 less instructional time
  - K-1 increase in instructional time in core
- Absence of Elementary Instructional coaches

## **Action Step One**



## We need to broaden our perspective and gather more data!

This year we have adopted I –Ready Assessment System

## **Action Step Two**



## Dive deep into the data and analyze contributing factors.

## Action Step Three



Partner with WSU Vancouver to collect and analyze data that can help us understand the complete picture.

## **Action Step Four**

Develop district and school level improvement plans that directly address the antecedents to the data and drive improved student achievement.